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2D Numerical Simulation of the Resistive Reconnection Layer.

D. A. Uzdensky� and R. M. Kulsrud

Princeton Plasma Physics Laboratory, P.O.Box 451,

Princeton University, Princeton, NJ 08543

(November 17, 1999)

In this paper we present a two-dimensional numerical simulation of a

reconnection current layer in incompressible resistive magnetohydrodynamics

with uniform resistivity in the limit of very large Lundquist numbers. We use

realistic boundary conditions derived consistently from the outside magnetic

�eld, and we also take into account the e�ect of the backpressure from 
ow

into the the separatrix region. We �nd that within a few Alfv�en times the

system reaches a steady state consistent with the Sweet{Parker model, even

if the initial state is Petschek-like.

PACS Numbers: 52.30.Jb, 96.60.Rd, 47.15.Cb.

I. INTRODUCTION

Magnetic reconnection is of great interest in many space and laboratory plasmas [1,2],

and has been studied extensively for more than four decades. The most important question is

that of the reconnection rate. The process of magnetic reconnection, is so complex, however,

that this question is still not completely resolved, even within the simplest possible canonical

model: two-dimensional (2D) incompressible resistive magnetohydrodynamics (MHD) with

uniform resistivity � in the limit of S ! 1 (where S = VAL=� is the global Lundquist

number, L being the half-length of the reconnection layer). Historically, there were two

�Currently at the University of Chicago.
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drastically di�erent estimates for the reconnection rate: the Sweet{Parker model [3,4] gave

a rather slow reconnection rate (ESP � S�1=2), while the Petschek [5] model gave any

reconnection rate in the range from ESP up to the fast maximum Petschek rate EPetschek �
1= logS. Up until the present it was still unclear whether Petschek-like reconnection faster

than Sweet{Parker reconnection is possible. Biskamp's simulations [11] are very persuasive

that, in resistive MHD, the rate is generally that of Sweet{Parker. Still, his simulations are

for S in the range of a few thousand, and his boundary conditions are somewhat tailored to

the reconnection rate he desires, the strength of the �eld and the length of layer adjusting to

yield the Sweet{Parker rate. Thus, a more systematic boundary layer analysis is desirable

to really settle the question. In particular, one needs an elaborate and detailed picture of

the reconnection current layer | namely, a picture that features a realistic model for the

variation of the outside magnetic �eld along the layer, and realistic 2D pro�les of the plasma

parameters inside the layer.

The development of such a framework is the main goal of the present paper. We believe

that the methods developed in this paper are rather universal and can be applied to a

very broad class of reconnecting systems that include more realistic physics. However, for

de�niteness and clarity we keep in mind a particular global geometry presented in Fig. 1

(although we do not use it explicitly in our present analysis). This Figure shows the situation

somewhere in the middle of the process of merging of two plasma cylinders. Regions I and

II are ideal MHD regions: regions I represent unreconnected 
ux, and region II represents

reconnected 
ux. The two regions I are separated by the very narrow reconnection current

layer. Plasma from regions I enters the reconnection layer and gets accelerated along the

layer, �nally entering the separatrix region between regions I and II. In general, both the

reconnection layer and the separatrix region require resistive treatment.
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FIG. 1. The global geometry.

In the limit S ! 1 the reconnection rate is slow compared with the Alfv�en time �A =

L=VA, which allows one to break the whole problem into the global problem and the local

problem. In our previous paper Ref. [6], we discussed that on the global scale (i.e., on the

scale of order the half-length of the layer L) the time evolution of the reconnecting system

can be described as a sequence of magnetostatic equilibria. In the paper [7] we explained

that the role of the global solution is to give the general geometry of the reconnecting system,

the position and the length of the reconnection layer and of the separatrix, and the boundary

conditions for the local problem (which, in turn, determines the reconnection rate). These

boundary conditions are expressed in terms of the outside magnetic �eld By;0(y), where y is

the direction along the layer. In particular, By;0(y) provides the characteristic global scales:

the half-length of the layer L, de�ned as the point where By;0(y) has minimum, and the

global Alfv�en speed, de�ned as VA = By;0(0)=
p
4��.

In this paper we study the local problem concerning the reconnection layer itself. Our

main goal here is to determine the internal structure of a steady state reconnection current

layer (i.e., to �nd the 2D pro�les of plasma velocity and magnetic �eld), and the reconnection

rate represented by the (uniform) electric �eld E.
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First, in Section II we discuss the assumptions of our physical model of the layer in

some detail. Then, in Section III we introduce the rescaled equations representing the

mathematical model of our problem. In Section IV we present our numerical simulations.

And, �nally, in Section V we give our conclusions.

II. PHYSICAL MODEL

By the local problem we mean the analysis of the internal structure of the reconnection

layer and the separatrix layer, which is necessary for the determination of the reconnection

rate. Since in ideal MHD these layers are current sheets of zero thickness, resolving their

inner structure cannot be done in this ideal framework and requires the addition of some

new nonideal physics.

Historically most important and conceptually most interesting for the purpose of resolv-

ing the current layer is the e�ect of small resistivity. The model in which the only nonideal

e�ect is that of the resistivity appears to be the simplest model with the minimal required

complexity needed to resolve the current density singularity of an ideal MHD solution.

Thus, in this analysis we assume that the only new nonideal physical process is small

constant and uniform resistivity � (and maybe viscosity �; see discussion below).

The inclusion of the small resistivity means introduction of a new dimensionless small

parameter associated with it, namely the inverse Lundquist number S�1 = �=LVA � 1,

which is considered the primary small parameter of the problem. This means that we are

interested in studying the case of S ! 1, and we want to �nd how the parameters of the

layer, such as its thickness and the reconnection rate, scale with S in the leading order. As

we shall see in the next section, making use of this small parameter helps to simplify the

problem signi�cantly while keeping all essential features, such as the two-dimensional nature

of the problem, intact.

The next assumption we make concerns a steady state. The steady-state condition means

that parameters of the current layer as well as the boundary conditions change very slowly
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compared with the global Alfv�en time, which is the characteristic time spent by a 
uid

element inside the reconnection layer. A very important consequence of the steady-state

condition in 2D geometry is that, due to the Maxwell equation r�E = �(1=c) @B=@t, the
z component of the electric �eld is uniform: Ez(x; y) = E = const.

As for the plasma viscosity, it does not seem to be necessary to include it, because

viscosity, unlike resistivity, does not play any role in the actual breaking the lines of force.

However, we always include a small constant and uniform viscosity � for two reasons. First,

in our numerical simulations we include it for numerical stability. The second and more

important reason is that the consideration of very small (even compared with the resistivity)

viscosity is useful to correctly understand some important features of the magnetic �eld

con�guration at the very center of the current layer (see Ref. [8]).

Next, most of the classical models of reconnection, including both Sweet{Parker and

Petschek, assume that the outside merging magnetic �eld is uniform. But this assumption

actually prohibits one from formulating the problem in a mathematically complete and

consistent manner, because the downstream boundary conditions for the 
ow cannot be

correctly speci�ed. In this quasi-one-dimensional framework, there is no natural end of

the layer; in particular, there is no way to de�ne the global scale L. This, in turn, makes

all attempts to get some scalings for the reconnection rate with the Lundquist number

essentially meaningless, since the de�nition of the Lundquist number involves L.

Now, in our paper a generic and more or less representative variation of the outside

magnetic �eld By;0(y) along the layer and along the separatrix [where it is called Bs;1(l)] is

included as an integral part of the problem. In particular, the global scale (the half-width

L of the layer) is de�ned naturally as the distance along the midplane from the center of

the current layer to one of the two endpoints | i.e., the points where the outside magnetic

�eld goes through a minimum and where the separatrices branch o� the midplane x = 0. In

fact, this global scale is the characteristic scale for the function By;0(y). Since this function

is determined by the global ideal MHD solution (see Ref. [7]), the scale L is, by de�nition,

independent of the physics of the resistive layer.

5



Thus, the nonuniformity of the outside magnetic �eld along the layer makes the problem

essentially two-dimensional (rather than one-dimensional). One practically important con-

sequence of this fact is that the problem becomes much more complicated mathematically,

so that one has to abandon any hope for a nice analytical solution and to resort to numerical

simulation instead.

Thus, the physical model of the reconnection layer that we are going to use in this paper

for treating the local problem, can be summarized as

two-dimensional, steady-state, incompressible, resistive MHD with constant and

uniform resistivity (and perhaps viscosity) in the limit of very large Lundquist

number.

Perfect mirror symmetry is assumed with respect to both the x axis and the y axis.1

We call this model the canonical reconnection layer model.

When considering the local problem in this model, we use the global scale in the y direc-

tion (along the layer), and the local scale in the x direction (across the layer). The outside

magnetic �eld By;0(y) determined by the global solution here plays the role of a boundary

condition at x!1.

Finally, although in this section we talked only about the reconnection layer itself, the

same physical model applies also to the separatrix layer.

III. SYSTEM OF RESCALED EQUATIONS

In accordance with our physical mode, we can now write down the set of two-dimensional

steady-state 
uid equations for our system. These equations are:

1Due to this symmetry, vy and Bx are even and vx and By are odd with respect to x = 0, and

vx and By are even and vy and Bx are odd with respect to y = 0. Thus, vx = 0 along x = 0 and

vy = 0 along y = 0, which means that the two axes of symmetry are stream lines.
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(i) The incompressibility condition:

r � v =
@vx
@x

+
@vy
@y

= 0: (1)

(ii) The z component of Ohm's law:

�jz = E + vxBy � vyBx; (2)

where E � Ez = const.

(iii) The equation of motion (with the viscosity):

v � rv = �rp + [jz �B] + �r2v; (3)

where the density is set to one.

Now we take the crucial step in our analysis. We note that the reconnection problem

is fundamentally a boundary layer problem, with S�1 being the small parameter. This

allows us to simplify our MHD equations by performing a rescaling procedure [9] inside the

reconnection layer, to make rescaled resistivity equal to unity. This can be done in a natural

way if one rescales the distances and the �elds in the y direction to the corresponding global

values (i.e., the length of the layer L, the outside magnetic �eld just above the center of the

layer By;0(0), and the corresponding Alfv�en speed VA), while rescaling the distances in the

x direction and the x components of the velocity and magnetic �eld to the corresponding

local values:

y

L
! y;

x

�0
! x;

vy
VA
! vy;

vx
VA�0=L

! vx;

By

By;0(0)
! By;

Bx

By;0(0)�0=L
! Bx; (4)

p

B2
y;0(0)=4�

! p;
E

By;0(0)VA�0=L
! E;

where �0 � LS�1=2 is the Sweet{Parker thickness of the current layer. Thus, one can see

that the small scale �0 emerges naturally as the thickness of the resistive boundary layer.
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The viscosity � is now rescaled as �=� ! �. We assume that it is at least as small as

the resistivity [which means � = O(�) or less], and most of the time (see Ref. [8]) we will be

interested in the case of vanishing viscosity � ! 0 (which means � � �).

Now, all of the rescaled dimensionless quantities (vx, vy, Bx, By) are generally of order 1.

Using the small parameter �0=L = S�1=2 � 1, one can simplify the equations by writing

them down in the leading nontrivial order in �0=L. This way one neglects all unimportant

corrections, keeping only the essential terms.

First, the incompressibility condition is written in rescaled quantities in exactly the same

way as in the unrescaled quantities:

@vx
@x

+
@vy
@y

= 0: (5)

The z component of the steady-state Ohm's law can be written as

E =
@By

@x
� vxBy + vyBx; (6)

where the �rst term on the RHS is the resistive term.

Next, consider the equation of motion. Since all the velocities in the x direction are small

compared with the Alfv�en speed, the inertial terms in the x component of the equation of

motion (3) are small, and this equation just gives one the pressure balance across the current

sheet:

@

@x

 
p+

B2

y

2

!
= 0; (7)

which allows one to determine the pressure p in terms of By(x; y) once the pressure and the

magnetic �eld By;0(y) outside the reconnection layer are known. It is customary to set the

pressure outside the layer to zero, so that

p(x; y) =
B2

y;0(y)

2
� B2

y(x; y)

2
: (8)

Finally, one has the y component of the equation of motion, with acceleration provided

both by the pressure gradient and by magnetic forces, and with the viscous force:

v � rvy = �@p

@y
+Bx

@By

@x
+ �

@2vy
@x2

: (9)
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It is interesting to note that almost everywhere in the layer the magnetic force jzBx =

Bx@xBy is actually just the y component of the magnetic pressure gradient; only very close

to the midplane (in a thin region where the unrescaled �elds satisfy By < Bx) can it be

interpreted as magnetic tension.

We believe that this rescaling procedure captures all the important dynamical features

of the reconnection process.

IV. NUMERICAL SIMULATIONS

In order to �nd the steady-state solution for the system, we designed a resistive MHD

code for the main reconnection layer. This main code was supplemented by another code

describing the separatrix, which is needed to provide the downstream boundary conditions

for the main code.

In Section IVA we describe the main code for the reconnection layer together with

the boundary conditions. In Section IVB we discuss the di�erent choices for the initial

conditions used in the simulation. In Section IVC we present the model for the separatrix

region that we have used in order to get the downstream boundary conditions for the main

layer. In Section IVD we report the results of our numerical simulations. More details can

be found in Ref. [9].

A. Numerical Scheme and Boundary Conditions

In order to approach the steady-state solution described by the system of rescaled equa-

tions (5), (6), (8), and (9), we followed the true time evolution of the system, starting with

some initial conditions that will be described in Section IVB.

The time evolution is described by the following two dynamic equations for the two

dynamic variables 	 and vy:

_	(x; y) = �r � (v	) + @2	

@x2
+

 
�y
@2	

@y2

!
; (10)
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and

_vy = �r � (vvy)� d

dy

"
B2

y;0(y)

2

#
+r � (BBy) + �

@2vy
@x2

+

 
�y
@2vy
@y2

!
: (11)

These equations are written (using r � v = 0) in conservative form (i.e., in the form of

conservation laws), which is preferable for numerical computations. Small arti�cial resistivity

�y and viscosity �y, acting in the y direction, are added to provide numerical stability.

Because they are small, these terms do not change the solution noticeably, as was veri�ed in

the runs. The natural unit of time in our simulations is the global Alfv�en time �A = L=VA.

Once vy and 	 are known everywhere at a new time step, one can �nd all other variables.

Namely, Bx and By are given by the derivatives of 	:

Bx = �@	

@y
; By =

@	

@x
; (12)

and vx is obtained from the incompressibility condition by integrating @vy=@y in the x di-

rection starting from the midplane, where vx = 0 because of the symmetry:

vx(x; y) = �
Z x

0

@vy
@y

dx: (13)

We used the �nite-di�erence method with centered derivatives (providing second order

accuracy) in both the x and the y directions.

The time derivatives were one-sided. Our scheme was explicit in the y direction, but in

the x direction the resistive term in Ohm's law (@2	=@x2) was treated implicitly, while all

other terms were treated explicitly. This enabled us to speed up the computations.

We conducted the simulations on a rectangular grid (im� jm). Because of the symmetry,

we considered only one quadrant (see Fig. 2).
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FIG. 2. Computational box used in the numerical simulation.

Now let us discuss the boundary conditions. There are four boundaries in the system:

the upstream (or upper) boundary x = xlim, 0 < y < ylim, the downstream (or right)

boundary y = ylim, 0 < x < xlim, and the two boundaries formed by the axes of symmetry:

the lower boundary x = 0, 0 < y < ylim, and the left boundary y = 0, 0 < x < xlim. The


ow enters through the upper boundary and leaves through the right boundary, so that

there is no 
ow of plasma through the left and the lower boundaries. While the boundary

conditions at the left and the lower boundaries come from simple symmetry conditions, the

boundary conditions on the upper boundary and especially on the right boundary are more

complicated, as we shall discuss below.

On the upper boundary, the boundary conditions come from matching with the ideal

MHD solution in region I above the reconnection layer. In rescaled quantities, this matching

should be done at x!1. But since in a numerical simulation it is not possible to place a

boundary of the computation box at in�nity, we place it at some su�ciently large xlim � 1.

The typical values of xlim in our simulations were xlim ' 4� 8.

From the ideal solution in region I we know that, as x!1, vy ! 0 (meaning vy � VA)

and By ! By;0(y), which is prescribed. It turns out that, since the upper boundary is placed
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not at in�nity but at some �nite (although large) xlim, it is better, for numerical reasons,

to choose @vy=@x(xlim) = 0 instead of vy(xlim) = 0. As for the magnetic �eld, we just set

@	=@x(xlim) = By;0(y). In our numerical simulations we typically took

By;0(y) = B0 + (1� B0)
q
1� y2; (14)

consistent with the cusp solution (see Ref. [7]). The value B0 of the outside magnetic �eld

By;0 at the endpoint y = 1 typically was taken to be B0 = 0:2 or B0 = 0:3 [the magnetic

�eld is normalized so that By;0(0) = 1].

This choice of boundary conditions worked well in our simulations. In particular, the

behavior of the solution near the upper boundary was smooth, and the solution deep inside

the reconnection layer did not depend on the exact position of the upper boundary.

At the lower boundary x = 0, the boundary conditions come naturally from the require-

ment that both vy and 	 be symmetric with respect to the midplane. Thus,

@vy
@x

= 0 and By =
@	

@x
= 0 (x = 0); (15)

and also vx(0; y) = 0.

Here, however, we would like to make one remark. The boundary condition for vy at

x = 0 is needed only when one includes the viscous term �@2vy=@x
2 in the equation of

motion. If one does not keep this term, then this equation contains only �rst derivatives

of vy in the x direction, so one needs only one condition, which can be set at the upper

boundary. In our simulations, however, we always include viscosity (usually small, but not

zero), both for numerical reasons and in order to resolve the behavior near the midplane

(see Ref. [8]).

The boundary conditions at the left boundary are similar to those on the lower boundary.

They follow from symmetry and are rather straightforward:

vy(x; 0) = 0; and Bx(x; 0) = 0: (16)

Now consider the right (or downstream) boundary. Usually we put it at some point

y = ylim close to the endpoint (typically ylim = 0:9 � 1:0). Then, one needs to specify the

12



downstream boundary conditions on this boundary. This boundary is, in fact, the interface

between the main layer and the endpoint region and the separatrix. The boundary conditions

should describe the e�ect of the separatrix back on the main layer, in particular the back

pressure. We are not aware of any previous numerical or theoretical studies in which the

role of the back pressure has been adequately investigated. The problem of how to set the

boundary conditions on this boundary is rather nontrivial and its discussion is postponed

until Section IVC.

To summarize, the advantages of our approach to numerical simulation of the reconnec-

tion layer are the following:

1) First, the use of rescaled equations takes us directly into the realm of S !1.

2) Second, this is an essentially 2D (rather than 1D) code that uses a realistic variation

of the outside magnetic �eld along the layer. The position of the endpoint is clearly de�ned

in terms of the function By;0(y). We do not assume By;0(y) = const as many people do.

3) We obtain the steady-state solution by following the true time evolution, and the

rescaled equations are such that we do not give the boundary conditions for the incoming


ow velocity at the upstream boundary. This is because the physical vx is small and its

evolution is not determined from a dynamic equation of motion. Instead, the equation of

motion in the x direction simply degenerates into the vertical pressure balance, and vx is

determined from the incompressibility condition. Thus, we do not specify vx(xlim; y) as a

boundary condition, which means that we do not prescribe the reconnection rate! The system

itself determines what the reconnection rate should be! This is really a very important point.

The fact that we rescaled the x coordinate using the Sweet{Parker scaling does not

actually mean that we prescribe the Sweet{Parker reconnection rate. If the system wants to

go at a faster rate, then it would try to develop some new characteristic structures, extending

beyond xlim, and we should be able to see it.
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B. Initial Conditions

We have performed several runs with di�erent initial conditions consistent with our

boundary conditions.

In some cases we started with a con�guration qualitatively resembling the Sweet{Parker

reconnection layer (see Figs. 3 and 4). These initial conditions can be written in the following

analytical form:

By(x; y) = By;0(y) tanh(x); (17)

	(x; y) = 	(0; y) +By;0(y) log cosh x; (18)

Bx(x; y) = �@	

@y
; (19)

where we took the outside magnetic �eld By;0(y) in the form (14), and the variation of the

magnetic 
ux on the midplane as

	(0; y) = ��

4
y2: (20)

The initial velocity was taken in the form

vx(x; y) = � E0

By;0(y)
tanh(x); (21)

and

vy(x; y) = �
Z y

0

@vx
@x

dy; (22)

where the initial outside electric �eld E0 varied but typically was of order one. We call

the initial conditions described by the set of Eqs. (4.17){(4.22) the Sweet{Parker-like initial

conditions.
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FIG. 3. Contour plot of the magnetic �eld for Sweet{Parker-like initial conditions.
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FIG. 4. Plots of j(x) for di�erent values of y at t = 0 for Sweet{Parker-like initial conditions.

In other runs we wanted to see whether the system would want to go with the faster

reconnection rate and whether it would develop the Petschek-like structures. We conjectured

that if the system wants to go at a faster reconnection rate, then it would at least be able to

go at a rate twice as fast as the Sweet{Parker rate. Therefore, we did several runs where at

t = 0 we set up a Petschek-like structure (see Figs. 5, 6, and 7) described by the following
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expressions:

	(0; y) = � 1

M
log cosh(z0); (23)

By(x; y) = B0;y(y)

"
tanh(z1) + tanh(z2)

2

#
; (24)

	(x; y) = 	(0; y) +
B0;y(y)

2M
[log cosh(z1) + log cosh(z2)� 2 log cosh(z0)]; (25)

Bx(x; y) = �@	

@y
; (26)

vy(x; y) =
tanh(z1)� tanh(z2)

2
; (27)

vx(x; y) = �M
"
tanh(z1) + tanh(z2)

2

#
; (28)

where z0 = M2y, z1 = Mx + M2y, and z2 = Mx � M2y, and where the parameter M

corresponds to the initial reconnection rate in terms of the Sweet{Parker reconnection rate.

It describes how well pronounced the Petschek-like structure is. Typically M was chosen

to be 2 or 3. We call the initial conditions described by the set of Eqs. (23){(28) the

Petschek-like initial conditions.
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FIG. 5. Contour plot of magnetic �eld at t = 0 for the Petschek-like initial conditions.
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C. The Downstream Boundary Conditions and the Model for the Separatrix Region

The downstream boundary y = ylim is the interface between the main layer and the

separatrix region. The boundary conditions at this boundary cannot be given in a simple
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closed form.2 Instead, they require matching with the solution in the separatrix region, which

itself is just as complicated as the main layer. Therefore, we have developed a supplemental

numerical procedure for the separatrix region.

To make the situation more tractable, we have adopted simpli�ed physical model for the

separatrix | namely, a model in which the resistive and the viscous terms are omitted, and

hence the magnetic �eld is frozen into the plasma. Even though this model does not describe

the separatrix completely accurately, it should give one a qualitatively correct picture of the

in
uence of the separatrix region back on the main layer, and thus su�ciently reasonable

downstream boundary conditions for the main layer. In particular, our model includes the

e�ects of the backpressure that the separatrix exerts on the main layer.

We follow one given �eld line as it goes through the separatrix of length Ls. This

�eld line is described in terms of two functions: the magnetic �eld B(l; t), and the parallel

velocity v(l; t) � vk(l; t). Here l is the length measured along the �eld line, starting from

the boundary between the separatrix and the main layer (l = 0 or y = ylim), and ending at

the re
ection point A at the top of Fig. 1 (l = Ls).

Now, the time evolution in this one-dimensional problem corresponds to the perpendicu-

lar motion of the �eld line through the separatrix region. The new time variable t represents

the relative position of the �eld line in real 2D space with respect to other �eld lines, and

there is a one-to-one correspondence between the time t and the x position of the footpoint

(the point where the �eld line intersects the boundary y = ylim) of this �eld line. This

correspondence between t and x is given by the x component of the velocity of the �eld

line, vxs � �E=By(x; ylim) < 0 (x decreases as t increases), and by the initial condition that

2For example, we have tried to use the so-called free-
ow boundary conditions: @2	=@y2 =

0, @2vy=@y
2 = 0. The steady-state solution exists and is reached within several Alfv�en times.

However, the solution in the bulk of the main layer strongly depends on the position of both the

upstream and downstream boundaries, which is physically not acceptable.
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x = xlim at t = 0. We stop the simulation of the separatrix at the moment t when x(t)

becomes zero | i.e., when the midplane is reached. A substantial advantage of this model

is that one actually does not need to know where the �eld line is in real 2D space! The

only thing one does need to know about the position of the �eld line in order to set up the

downstream boundary conditions for the main layer is where it connects to the main layer

| i.e., what is the value of the coordinate x at the point where the �eld line intersects the

downstream boundary y = ylim (i.e., the footpoint).

The boundary conditions on the upper boundary of the separatrix are v(l) = 0 and

B(l) = Bs1(l), where Bs1(l) is the �eld outside the separatrix in the upstream region given

by the global ideal MHD solution, as explained in Ref. [7]. In our simulation we took this

outside �eld in the form

Bs;I(l) =

vuutB2
0 +

C2l

Ls

 
1� l

2Ls

!
: (29)

Now these conditions become the initial conditions at t = 0 for our 1D (plus time)

problem concerning this one �eld line.

As in the main layer, we use here an explicit (in l) code with centered di�erences for

convective derivatives in the l direction. The boundary conditions at the right boundary

l = Ls (the re
ection point A on Fig. 1) come from the condition of symmetry with respect

to this point (l = Ls):

v(Ls; t) = 0;
@B

@l
(Ls; t) = 0: (30)

The other pair of boundary conditions is given at the left (incoming) boundary l = 0 and

is provided by the main layer in terms of the values of vy(x; ylim) and By(x; ylim). Assuming

that the steady state in the main layer has already been achieved, these boundary conditions

are constant in time in the laboratory frame, but in the frame moving along together with

the �eld line, they are now time-dependent.

Since at the boundary y = ylim the layer is still essentially straight, and the �eld lines

(except those few very close to the midplane, which are ignored) are also almost straight,

then the absolute value of the magnetic �eld B is almost exactly equal to By and the parallel
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velocity v is almost exactly equal to vy. Therefore, the matching conditions at this boundary

are By = B, vy = v.

As for the downstream (or lower) boundary, one really does not need to set any conditions

there because the x coordinate in our model corresponds to time and the new equations have

only �rst-order time derivatives.

Now let us derive the equations for this model of the separatrix. The main idea in this

derivation is that the convective term v? � r? is replaced by the time derivative @=@t. The

natural unit of time in this model is the Alfv�en time, the natural unit of distance in the

l direction is the global scale L, and that of the parallel velocity is the Alfv�en velocity VA.

First of all, one can apply this model only to the part of the separatrix where the �eld lines

are not very strongly curved (i.e., where the radius of curvature of the �eld lines is of order L),

the magnetic �eld itself is su�ciently strong (of order B0 or at least B � B1 = E=VA), and

the perpendicular velocity v? (which in ideal MHD is equal to E=B) is small compared with

the parallel velocity vk = O(VA). Thus, the model is bound to fail in the very small region

near the midplane where the real physical By becomes comparable with Bx.
3

In the system of reference moving together with the �eld line in the direction perpendic-

ular to B, the (parallel component of) the magnetic induction equation becomes

_B =
@B

@t
= B

@

@l
v � v

@

@l
B; (31)

and the parallel equation of motion becomes

@v

@t
= �v@v

@l
� @

@l

"
B2

s1(l)

2
� B2(l; t)

2

#
: (32)

It is interesting to note that, while the 
uid in the initial problem was incompressible,

in this 1D problem the motion is e�ectively not incompressible (@v=@l 6= 0), the thickness

of the 
ux tube (� 1=B) playing the role of density.

3This presumably occurs at some in�nitesimally short distance �1 from the midplane, where

�1=�0 � �0=L� 1. Since one considers the limit S !1, and hence �0=L! 0, this region shrinks

to zero, and one should not be concerned too much about it in our simulation.
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Now let us see how the back pressure from the separatrix acts on the main layer.

As the �eld line moves, the incoming velocity v(l = 0; t) increases from almost zero at

t = 0 to about the Alfv�en velocity, and the incoming magnetic �eld B(l = 0; t) drops from

B0 to zero at the midplane. Therefore, there is a point x = xc somewhere in the middle of

the left boundary of the separatrix where the incoming 
ow becomes locally super-Alfv�enic

(v > B). The propagation of information with respect to the 
uid in my model occurs

at the local Alfv�en speed by the means of two characteristics dl=dt = v � B. For x > xc

(v < B), one characteristic goes from the left boundary l = 0 (y = ylim) towards the right

boundary, while the other characteristic goes from the upper boundary x = xlim towards the

left boundary, carrying information about the pressure and the 
ow in the separatrix to the

main layer. This means that, for x > xc, the layer \feels" the e�ect of the separatrix in the

form of the back pressure coming from the previously undisturbed 
uid in the separatrix

region. This back pressure is found to have some stabilizing e�ect, making the solution deep

inside the main layer independent of xlim and almost independent of the position ylim of the

downstream boundary (where the separatrix and the main layer solutions are matched).

After the �eld line crosses the point x = xc, the 
ow becomes super-Alfv�enic and the

characteristic dl=dt = v � B > 0 is deviated away from the left boundary back into the

separatrix region. Now both characteristics come out of the left boundary and there is no

propagation of information from the separatrix region into the main layer. This also means

that when the �eld line reaches the vicinity of the midplane x = 0 and the description of

the separatrix region as a region of almost straight �eld lines fails, it does not matter much,

because the 
ow at this point is very strongly super-Alfv�enic and the main layer does not

feel what happens downstream. We would like to remark that in our simulations we have

not observed any shock formation in the separatrix.

Of course, this picture of the 
ow of information is valid only in this ideal MHD model.

In the real situation with resistivity, there is always propagation of information upstream

due to the resistive di�usion.

To summarize, the model of the separatrix region presented here has two main drawbacks.
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First, it describes an ideal MHD separatrix. Second, it assumes that the boundary conditions

on the incoming boundary l = 0 (y = ylim) are stationary (i.e., that the main layer has

already reached the steady state). In addition, the model is valid only when the �eld lines

are essentially straight, as discussed above (the region where this assumption breaks down

is discussed in Ref. [9]). Despite all that, however, we feel that this model provides a

qualitatively correct picture of the dynamics in the separatrix region in the steady state, and

thus gives us su�ciently reasonable downstream boundary conditions for the main layer.

D. Results of the Simulations

Now let us present and discuss the results of our numerical simulations.

We found that, after a transient period of a few Alfv�en times, the system reaches a steady

state that is independent of the initial con�guration.

In particular, when we start with a Petschek-like initial con�guration (described in Sec-

tion IVB), the high velocity 
ow rapidly sweeps away the transverse magnetic �eld Bx (see

Fig. 8). This is important, because, for a Petschek-like con�guration to exist, the transverse

component of the magnetic �eld on the midplane, Bx(0; y), must be large enough to be

able to sustain the Petschek shocks in the �eld reversal region. For this to happen, has to

rise rapidly with y inside a very short di�usion region, Bx(0; y) y < y� � L (in the case

M = 2, presented in Fig. 8, y� = L=4), to reach a certain large value (Bx = 2 for M = 2) for

y� � y < L. While the transverse magnetic 
ux is being swept away by the plasma 
ow,

it is being regenerated by the merging of the By �eld, but only at a certain rate and only

on a global scale in the y-direction, related to the nonuniformity of the outside magnetic

�eld By;0(y), as discussed in Refs. [1] and [9]. As a result, the initial Petschek-like structure

is destroyed, and the in
ow of the magnetic 
ux through the upper boundary drops in a

fraction of one Alfv�en time. Then, after a transient period, the system reaches a steady

state consistent with the Sweet{Parker model.
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FIG. 8. The time evolution of the variation of the transverse magnetic �eld Bx(0; y) along the

midplane x = 0 for the Petschek-like initial conditions.

In general, the transient period typically lasts a few Alfv�en times, during which the

incoming electric �eld can oscillate around its �nal steady-state value. These oscillations

have a period of order �A, and a decay time also of the same order. After several �A, the

electric �eld becomes constant and uniform throughout the computational domain and the

system approaches steady state. We terminate our simulations typically after 5 or 10 Alfv�en

times. The time evolution of the incoming electric �eld [i.e., E(x = xlim; 0)(t)] for di�erent

choices of the initial conditions is represented in Figs. 9 and 10.
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FIG. 9. The time evolution of the electric �eld E at the point x = xlim, y = ylim for the

Sweet{Parker-like initial conditions with E0 = 1:0.
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FIG. 10. The time evolution of the electric �eld E at the point x = xlim, y = ylim for the

Petschek-like initial conditions with M = 2 (corresponding to E0 = 2:0).

We believe that the fact that we rescaled x using the Sweet{Parker scaling does not

mean that we prescribe the Sweet{Parker reconnection rate. Indeed, if the reconnecting

system wanted to evolve towards Petschek's fast reconnection, it would then try to develop

some new characteristic structures, e.g., Petschek-like shocks, which we would be able to

see. Note that, if Petschek is correct, then there should be a range of reconnection rates

including those equal to any �nite factor greater than one times the Sweet{Parker rate ESP.

However, in our simulations we have demonstrated that there is only one stable solution and

that it corresponds to E = ESP. In this sense we have demonstrated that Petschek must

be wrong since reconnection can not even go a factor of two faster than Sweet{Parker, let

alone almost the entire factor of
p
S. There seems no alternative to the conclusion that fast

reconnection is impossible.

It is interesting that in Petschek's original paper the length of the central di�usion

region y� is an undetermined parameter, and the reconnection velocity vrec depends on this

parameter as VA(l=y�)
2=
p
S. If y� is taken as small as possible then Petschek �nds that

vrec � VA= log(S). However, y� should be determined instead by balancing the generation

of the transverse �eld Bx against its loss by the Alfv�enic 
ow (it should be remarked that

Petschek did not discuss the origin of this transverse �eld in his paper). As we discussed

above, this balance yields y� � L, with the resulting unique rate equal to that of Sweet{

Parker. This results are borne out by our time-dependent numerical simulations.

24



The �nal steady-state con�guration represents the Sweet{Parker reconnection layer. This

means that all the plasma parameters are of order one in the rescaled coordinates, and change

on a scale of order �0 in the x direction and on a global scale L in the y direction. For our

choice of boundary conditions [i.e., of the outside magnetic �eld By;0(y)], the reconnection

rate in the steady state was E = 1:0ESP, where ESP � �1=2VABy;0(0) is the typical Sweet{

Parker reconnection rate.

The use of the time-dependent equations allows us not only to �nd the steady-state

solution, but also to draw some conclusions about its stability. The Sweet{Parker solution

was found to be stable and robust: it did not depend on the positions of the boundaries

xlim, ylim or on the small arti�cial resistivity and viscosity. Moreover, we found that it is

fairly insensitive even with respect to the choice of the parameters describing the outside

magnetic �eld, such as B0 = By;0(1) (thus, E varies by about 10% as B0 changes from 0 to

0.3).

The steady-state Sweet{Parker solution is represented in Figs. 11, 12, 13, 14, and 15.

This solution corresponds to the following set of the parameters describing the boundary

conditions: xlim = 5:0, ylim = 1:0, B0 = 0:3, Ls = 2:0, C = 0:957 [see Eqs. (14) and (29)].

In this particular run the values of the perpendicular viscosity �, and of the (arti�cial)

resistivity and viscosity acting in the y direction were � = 0:02, �y = �y = 0:01.
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FIG. 11. Contour plot of the steady-state magnetic �eld in the reconnection layer.
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FIG. 12. The current density j(x; y) in the steady state (all four quadrants are shown for clarity).
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FIG. 13. Plots of j as a function of x for several di�erent values of y in the steady state.
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FIG. 15. Plots of Vy as a function of x for several di�erent values of y in the steady state.

There are several things that should be noted about this solution:

As can be seen from Fig. 13, the current density as a function of x at any given value

of y peaks on the midplane x = 0. This makes the solution qualitatively di�erent from a

Petschek-like con�guration (see Fig. 7) in which the current density is concentrated in a

shock-like structure o� the midplane.
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At any given y, the current density j(x) rapidly goes to zero as x!1, and By(x; y)!
By;0(y) monotonically, which means that there is no 
ux pile up in front of the layer. The

velocity vy does not quite go to zero at the upper boundary, but its value at x = xlim is

small and goes to zero as the arti�cial �y; �y ! 0.

Next, the solution in the layer shows an essentially linear rise of vy and Bx along the

midplane x = 0 (see Figs. 16 and 17). The linear behavior of Bx(x = 0; y) near y = 0,

contrary to the cubic behavior predicted by [10], was explained in Ref. [8] (together with

the nonanalytic behavior of the solution near the midplane in the limit � ! 0).

Finally, Bx exhibit a sharp change near the downstream boundary y = ylim, as can be

seen in Figs. 17. This change is due to the fact that in the separatrix region we neglect the

resistive term 	xx, which is in fact �nite. That is, the (perpendicular) resistivity e�ectively

has a discontinuity across y = ylim: �(y < ylim) = 1 and �(y > ylim) = 0. This discontinuity

in the equations also shows up in the solution, but it is smoothed out over some vicinity of

ylim by the arti�cial resistivity and viscosity in the y direction. As these �y, �y go to zero,

the region of the rapid change near ylim becomes smaller and smaller.
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FIG. 16. Plots of vy as a function of y along the midplane x = 0 in the steady state.
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Let us add a few remarks about the role of the separatrix region in our simulations.

First, it appears that the destruction of the initially-set-up Petschek-like con�guration

and its conversion to the Sweet{Parker-like layer is so robust and happens so fast, that it

is determined by the dynamics in the main layer and by its interaction with the upstream

boundary conditions [i.e., with the scale of nonuniformity of the outside magnetic �eld

By;0(y)]. As a consequence, it has nothing to do with the downstream boundary conditions

(i.e., with the separatrix region). Therefore, the fact that our model of the separatrix does

not describe the separatrix completely accurately seems to be unimportant, as far as the

instability of the Petschek solution is concerned.

Thus, we believe that the separatrix region, while providing physically reasonable down-

stream boundary conditions for the main layer problem, does not really have a strong e�ect

on the principal result that the stable steady-state solution is the Sweet{Parker layer with

the Sweet{Parker reconnection rate. Still, we have to point out that for the solution of the

problem to be really complete, one needs to build a better model of the separatrix region.

Such a model would include real time dependence and resistivity, and also would treat the

very near vicinity of the endpoint of the reconnection layer. A proper consideration of the
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endpoint region cannot be done in rescaled variables, and a further rescaling of variables

and matching is needed.

V. CONCLUSIONS

To summarize, in this paper we present a de�nite solution to a particular clear-cut,

mathematically consistent problem concerning the internal structure of the reconnection

layer within the canonical framework (incompressible 2D MHD with uniform resistivity)

with the outside �eld B0;y(y) varying on the global scale along the layer. We have �rst

derived a system of rescaled equations that should be valid in the limit S !1. Then, we

have developed a 2D resistive MHD code that followed the time evolution of the system in

order to achieve the steady state.

We conclude that, under the assumptions of our model, the Petschek-like solutions are un-

stable and the system quickly evolves to the only stable steady-state solution corresponding

to the Sweet{Parker reconnection layer. Thus, the Petschek mechanism for fast reconnection

does not work in our model. The steady-state reconnection rate in our model problem is

remarkably close to the Sweet{Parker value ESP = By;0(0)VA=
p
S.

This main result is consistent with the results of simulations conducted by Biskamp [11]

and also those by Ugai [13] and by Scholer [14]. It also agrees with the experimental results

in the MRX experiment [12].

Finally, even though we draw our conclusions (about Petschek-like structures being un-

stable) only for this very speci�c model, this result is fundamentally important, because this

model is the canonical framework typical of most models of magnetic reconnection, including

both Sweet{Parker and Petschek. This framework is the simplest possible framework for

a reconnection problem, and thus provides the necessary foundation on top of which one

can add more complicated physical processes. Because the Sweet{Parker model with the

classical (Spitzer) resistivity is known to be too slow to explain the very fast time scale for

the energy release in solar 
ares, one has to look for physics beyond resistive MHD with
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the Spitzer resistivity. The inclusion of some new physical processes into the model (lo-

cally enhanced anomalous resistivity is probably the most suitable candidate) may create a

very di�erent situation in which some Petschek-like structure with fast reconnection may be

possible.
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